大数据处理框架有哪些(全面了解大数据处理框架)

来源:国外服务器 在您之前已被浏览:1 次
导读:目前正在解读《大数据处理框架有哪些(全面了解大数据处理框架)》的相关信息,《大数据处理框架有哪些(全面了解大数据处理框架)》是由用户自行发布的知识型内容!下面请观看由(国外主机 - www.2bp.net)用户发布《大数据处理框架有哪些(全面了解大数据处理框架)》的详细说明。
笨笨网美国主机,w ww.2 b p .n e t

大数据要实现处理,需要专业的技术手段去实现,以Hadoop、Spark为首的一些计算框架,也已经在大数据处理当中,稳稳地占据一席之地。当然,在大数据当中,可用的计算处理框架不止于此。今天加米谷学院就来为大家介绍一些大数据常用处理框架。
发展到今天,大数据处理主要分为两类大的需求,一是批处理,一是流处理。在企业的实际业务场景当中,可能会只需要批处理或者流处理,也可能同时需要批处理和流处理,这就使得搭建大数据系统平台的时候,需要根据具体场景来进行技术选型。

大数据处理框架有哪些(全面了解大数据处理框架)

大数据处理框架,通常可以分为三类——
①批处理框架:Apache Hadoop
②流处理框架:Apache Storm、Apache Samza
③批处理+流处理框架:Apache Spark、Apache Flink
这里我们不对各个框架做更具体的讲解,而是先来理解这些不同处理模式背后的思想。
1、批处理
批处理是大数据处理当中的普遍需求,批处理主要操作大容量静态数据集,并在计算过程完成后返回结果。鉴于这样的处理模式,批处理有个明显的缺陷,就是面对大规模的数据,在计算处理的效率上,不尽如人意。
目前来说,批处理在应对大量持久数据方面的表现极为出色,因此经常被用于对历史数据进行分析。
2、流处理
批处理之后出现的另一种普遍需求,就是流处理,针对实时进入系统的数据进行计算操作,处理结果立刻可用,并会随着新数据的抵达继续更新。
在实时性上,流处理表现优异,但是流处理同一时间只能处理一条(真正的流处理)或很少量(微批处理,Micro-batch Processing)数据,不同记录间只维持最少量的状态,对硬件的要求也要更高。
3、批处理+流处理
在实际的应用当中,批处理和流处理同时存在的场景也很多,混合处理框架就旨在解决这类问题。提供一种数据处理的通用解决方案,不仅可以提供处理数据所需的方法,同时提供自己的集成项、库、工具,可满足图形分析、机器学习、交互式查询等多种场景。
关于大数据常用处理框架,以上就为大家做了简单的介绍了。大数据系统平台的搭建,往往需要在这些开源大数据处理框架当中进行选择,因此也就要求开发者们有相应程度的掌握。

笨笨网美国主机,w ww.2 b p .n e t
提醒:《大数据处理框架有哪些(全面了解大数据处理框架)》最后刷新时间 2025-03-21 11:13:51,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《大数据处理框架有哪些(全面了解大数据处理框架)》该内容的真实性请自行鉴别。